A detailed look at the cumulus-valve mechanism and its potential implications for cloud-base cloudiness

Raphaela Vogel and Sandrine Bony LMD/IPSL, CNRS, Sorbonne University, Paris

Uncertain warming response of cloud-base cloudiness in trades

Discrepancy in warming response between GCMs and Large-eddy simulations (LES) near cloud base, where cloud amount largest (Vial et al. 2017, Nuijens et al. 2014)

- > GCMs: very sensitive to warming, controlled by convective mixing (Sherwood et al. 2014)
- > LES + Observations: largely insensitive (Bretherton et al. 2013, Nuijens et al. 2014, Vogel et al. 2016)

- > convection acts like a valve that maintains the mixed-layer top h close to the lifting condensation level (LCL) (Betts 1976, Albrecht et al. 1979, Neggers et al. 2006)
- > negative feedback on humidity, and pot. cloudiness near cloud base (Neggers et al. 2006, Nuijens et al. 2015)
- > could explain larger cloud fraction with increasing mass flux
 - → opposite to what many GCMs do

$$\frac{Dh}{Dt} = E + W - M$$

$$M = a_{co} \cdot w_{co}$$

purpose:

Use ICON-LEM simulations to study the premises of the valve mechanism and its potential implications for cloud-base cloudiness

research question:

Does cloud-base cloudiness increase with increasing mass flux?

ICON-LEM simulation over tropical Atlantic

- > ICON-LEM simulations run by Matthias Brueck at MPI
- > Smagorinsky turbulence, binary cloudiness, fixed SST
- > initialization and lateral boundary conditions from ECMWF IFS (nudged every hour)
- > 150m, 300m & 600m resolution, 155 vertical levels

used here:

- > 150 m resolution on 1° x 2° domain upstream Barbados
- > 6 days in December 2013, from 12 LT 8 LT

Does cloud-base cloudiness increase with increasing mass flux?

> The mass flux M explains a lot of the variations in cloud-base cloud fraction (a_{cld})

> The mass flux M explains a lot of the variations in cloud-base cloud fraction (a_{cld})

- > The mass flux M explains a lot of the variations in cloud-base cloud fraction (a_{cld})
- > Positive daytime and negative nighttime relationship between M and acid on some days

M and RH_{max} together explain cloud-base cloudiness very well

$$M = a_{co} \cdot w_{co}$$

- > Maximum relative humidity at mixed-layer top (RH_{max}) important additional control
- > From mass budget perspective, M controlled by entrainment rate and large-scale vertical velocity

(Vogel, Bony, Stevens, in review)

> What controls RH_{max}?

RH_{max} controlled by surface RH and sub-cloud layer depth (h)

> Sub-cloud layer thus well mixed!

RH_{max} controlled by surface RH and sub-cloud layer depth (h)

> Sub-cloud layer thus well mixed!

1. constant h:

2. constant RH_{10m}:

RH_{max} controlled by surface RH and sub-cloud layer depth (h)

- > Sub-cloud layer thus well mixed!
- > Cumulus valve: Decrease in h in response to increase in M reduces RH_{max} and cloudiness, which reduces M
- > GCMs tend not to resolve variations in h and unphysically compensate the increasing M by entrainment

Summary

- > Combination of M and RH_{max} explains cloud-base cloudiness very well (R=0.95)
- > M controlled by entrainment rate and large-scale vertical velocity (Vogel, Bony, Stevens, in review)
- > RH_{max} controlled by surface RH and sub-cloud layer depth

How to think about the cumulus valve mechanism?

Coupling between mass flux and RH_{max} through mass budget crucial for capturing cloud response

>> to be tested during the EUREC⁴A campaign <<

